
CS 7480
Special Topics in PL

Formal Security for Cryptography

Joshua Gancher

This Class

• Seminar-style class on the following topic:

How can we use formal methods to make cryptography more secure?

•Why would I care?

• Increasingly important, practical area of research

• Interdisciplinary area of research: many opportunities

• Spans the range from highly applied to theoretical

• Spans multiple research styles: Systems, PL, Applied Verification

Today

• Logistics, Introductions

•Course Overview

• “SoK: Computer-Aided Cryptography”

• Background for this area: PL, Crypto, Verification

• Nobody is expected to be an expert in all (or any) of these!

• Only requirement from you: a willingness to learn

• Supplemental background reading will be provided

•When in doubt about a topic, ask me

• Goals for the class:

• Bring you up to speed in this area of research (Computer-Aided Crypto)

• Get practice critically reading research papers

• Carry out a research project

Class Resources

• Course Webpage: https://gancher.dev/CS7480_Fall2024/class.html

• Course assignments, link to syllabus on Canvas

• Office Hours: by appointment

• Contact me:

• j.gancher@northeastern.edu (include CS7480 in the subject line)

• Office: WVH 360

https://gancher.dev/CS7480_Fall2024/class.html
mailto:j.gancher@northeastern.edu

Please talk to me if you are feeling lost /

need support in the class!

Coursework
• Reading, responding to papers

• Fill out a small questionnaire; ~15-20min after reading the paper

• In-class participation

• Self-directed Final Project

Grading Policy on syllabus:

40% paper responses, 40% final project, 20% participation

Class Format

•Come to class having read the paper, filled out questionnaire

• I may/may not give a brief background lecture

•Paper discussion, guided by questionnaire responses

Introductions

Course Overview

Use:
Encryption

Digital Signatures
Key Derivation Functions

…

to get
Confidentialy

Integrity
Authentication

TLS

SSH

Crypto is Essential

while (1) {
 switch (st->write_state) {
 case WRITE_STATE_TRANSITION:
 if (cb != NULL) {
 /* Notify callback of an impending state change */
 if (s->server)
 cb(ssl, SSL_CB_ACCEPT_LOOP, 1);
 else
 cb(ssl, SSL_CB_CONNECT_LOOP, 1);
 }
 switch (transition(s)) {
 case WRITE_TRAN_CONTINUE:
 st->write_state = WRITE_STATE_PRE_WORK;
 st->write_state_work = WORK_MORE_A;
 break;
 case WRITE_TRAN_FINISHED:
 return SUB_STATE_FINISHED;
 break;

 …
 }
 case …:

…
 }

}

Complex low-level state machines

.text

.global _aes128_key_expansion
_aes128_key_expansion:
 movdqu 0(%rdi), %xmm1
 mov %rsi, %rdx
 movdqu %xmm1, 0(%rdx)
 aeskeygenassist $1, %xmm1, %xmm2
 pshufd $255, %xmm2, %xmm2
 vpslldq $4, %xmm1, %xmm3
 pxor %xmm3, %xmm1
 vpslldq $4, %xmm1, %xmm3
 pxor %xmm3, %xmm1
 vpslldq $4, %xmm1, %xmm3
 pxor %xmm3, %xmm1
 pxor %xmm2, %xmm1

Hand-optimized assembly

Crypto is Complicated
TLS

SSH

Crypto can go wrong

This class: preventing vulnerabilities
before they happen.

https://arstechnica.com/security/2024/09/yubikeys-are-vulnerable-to-cloning-attacks-thanks-to-newly-discovered-side-channel/

RFC Document: 160+ pages of English prose

https://openhub.net/p/openssl/analyses/latest/languages_summary

What can go wrong?

Protocol Design

Protocol Implementation
C, Asm

buffer overflows

timing leakages

unsound invariants

ciphertext leakages
underspecification

incorrect implementations

Design-Level Vulnerabilities

Implementation-Level Vulnerabilities

What can go wrong?

• The protocol can be insecure in the first place

• Examples:

• encrypting under the wrong key

• confusing different clients

•misunderstanding security guarantees of the crypto

• format confusion attack

Design-Level Security

𝖽𝖾𝗋𝗂𝗏𝖾𝖽 K = 0!

• The implementation can behave badly

• Examples:

•Concurrency-related bugs

•Corner cases in state machines

•Buffer overflows

•Hard-to-notice errors in handwritten assembly

What can go wrong?
Functional Correctness

Client Server

Repeat this back to me:

“hello”, 5 chars

“hello”

Heartbleed Attack

struct HeartbeatHello {

uint16 length;

bytes[payload] payload

}

void ProcessHeartbeat(h) {

 netsend(h.payload, h.length);

}

Evil
Client

Server

Repeat this back to me:

“hello”; 256 chars

“hello0x12345…”

secret key!!

Heartbleed Attack

struct HeartbeatHello {

uint16 length;

bytes[payload] payload

}

void ProcessHeartbeat(h) {

 netsend(h.payload, h.length);

}

Need to update OpenSSL
Send those updates to entire internet
Locate compromised TLS certificates

Send certificate revocations

“supporting the traffic to deliver the CRL would have added
$400,000USD to Globalsign's monthly bandwidth bill.”

CloudFlare, 2014

Heartbleed Attack
Repercussions

What can go wrong?
Side-Channel Leakages

• The implementation can be insecure: leak more than intended

• Examples:

• Timing side channels:

•if lastBit(key) == 0 then doSlowThing else doFastThing
• YubiKey vulnerability

• Memory side channels:

•A[secret] = 0: can leave behind traces of the secret in cache
•Spectre, Meltdown

secret key
signature

secret key

signature

signature

request

secret key stolen

buffer overflow in software

ECDSA Signature:

• Long-term private key D

• To sign a message M:

• Generate nonce K

• Use D, K, M ==> generate signature

• Involves computing (K-1 mod N)

• Throw away the nonce K

Know K, M, signature Can compute private key D

Number of loops depends on value of input!

To compute K-1 mod N:

Can time the code to deduce information about K

Along with (many) other tricks,

allows you to extract value of private key

What can we do?

•Use formal methods!

• Mathematically prove that cryptographic software isn’t vulnerable

Type Systems Theorem Provers
automatically type check the code mechanize formal proofs about the code

Formal Methods to the Rescue

mechanized proofs

of security for protocols, state machines

mechanized proofs

of functional correctness,

memory safety

mechanized proofs

of side-channel resistance

Design-Level Security

Symbolic Security Computational Security

Functional Correctness

Side-Channel Security

Some Case Studies

Integrated into BoringSSL

roughly half of all HTTPs connections mediated by verified code

Chrome browser

Android

Class Plan
•Part 1: Background and Overview
• Today and next class

•Get you up to speed for Part 2

•Part 2: Protocol Security

• Verifying high-level designs of cryptographic protocols

•Part 3: Implementation Security

• Functional Correctness, side-channel security of low-level crypto

•Part 4: Additional Topics, subject to interest

Next Class (Sep 10)
• Introduction to some of the technical ideas in the class

• Verification Bootcamp:

•Specifying languages via syntax + semantics

• Formal logic and type systems

• Verification tools (Dafny and Coq)

•Provable Security:

• Foundations:

•Polynomial-Time Algorithms, Hardness Assumptions

• The Symbolic Model of Cryptography

•Cryptographic Games: Encryption, Digital Signatures, Hash Functions

•Specifying Security for Protocols (TLS, WireGuard, …)

First Paper (Friday, Sep 13)

Supplementary Reading:

Security Protocol Verification:

Symbolic and Computational Models

