CS 7480
Special Topics in PL

Class 2: Foundations
Sep 10, 2024

Joshua Gancher

Today

* Build a knowledge base to help you be successful in this class

* Foundations in Provable Cryptography

Cryptography

Scope for today:

Crypto used in communication protocols: TLS/WireGuard/Kerberos/...
Everything you need to know to understand what we will be reading for Part 1

Won’t touch on “next-gen crypto”:. Multi-Party Computation, Blockchains, ZKP ...

The Fundamental Problem

 Communication protocols are designed to work over open networks

» Attacker can read and modify any message, control scheduling

 How to regain any security?

* Parties must hold secret keys, take advantage of their secrecy

Key Primitive: Symmetric Encryption

T
m J.

C <— Enc(k, m) m «— Dec(k, c)

_ Gen : probabilistically outputs akey k € {(0,1}*
Encryption

Enc:givenkey kand m € {0,1}*,
Scheme: probabilistically outputs ciphertext ¢ € {0,1 }*

Dec: given key k and ciphertext ¢
outputs message or returns an error _L

Security Properties for Symmetric Encryption
(informally, for Authenticated Encryption)

Decryption must be correct:

if K <- Gen and ¢ <- Enc(k, m), then Dec(k, ¢) = m

If attacker only sees ciphertexts but not otherwise the key:
* Plaintext stays secret, except for its length (Semantic Security)

» Attacker can’t produce a valid ciphertext (Ciphertext Integrity)

\Y;
Counter 0 Counter 1 Counter 2
=] =] =]
) 4) 4
Plaintext 1 —»E} Plaintext 2 —>€9
\ 4 \ 4
Ciphertext 1 Ciphertext 2
D D
\ 4 \ 4
[mult 4 J [mult 4 } [mult 4 J
T |
Auth Data 1 len(A) || len(C) —>€}
A 4
[muItH J

Representative Instance: AES-GCM

Symmetric Crypto:
built on decades of research

INto secure ciphers, hashes

security is heuristic (but heavily studied)

Keys are uniformly random bytes

Main Problem: Key Distribution

Symmetric encryption only secure if

both parties hold the same secret, randomly generated key

* |f key isn’t a secret: attacker can decrypt, forge ciphertexts

* |f key isn’t the same: communication will fail, or parties can be deceived
* A thinks it’s talking to B, but really talking to C

* |f key isn’t generated correctly, attacker can use this to attack

 |f first bit = 0, now there are half as many possible keys!

Solutions to Key Generation

1. Manually deliver the key to both people

* Unsuitable for the public internet
2. Use more cryptography to deliver the key securely

* \We do this by using public key cryptography (PKC)

Crypto Necessary for Communication Protocols

Encryption

carries out secure comm.

Key Derivation J

converts shared secrets to
good encryption keys

Diffie-Hellman _/

create shared secret using PKC

_J

Digital Signatures

authenticating against public key

Diffie-Hellman Exchange

)

2

A

Only A knows A’s secret key Only B knows B’s secret key

Over public channel,

construct shared secret that only A and B know

Diffie-Hellman Exchange

Gen() : SecretKey
MakePK(sk : SecretKey) : PublicKey

combine(sk : SecretKey, pk : PublicKey) : SharedSecret

/! N
my secret key their public key

)

b &

ss, ;= combine(sk,, pkp) ssp := combine(sky, pk,)

Diffie-Hellman Exchange Properties

correctness: combine(sk,, pky) = combine(sky, pk,)

if sk,, Skp are kept secret,
secrecy:
5SS looks random to attacker

)

b &

ss, ;= combine(sk,, pkp) ssp := combine(sky, pk,)

Diffie-Hellman

under the hood: cyclic groups (often Elliptic Curves)

G cyclic group of order N, generator g

Gen() := Uniform(Z)
MakePK(x) := g*

combine(x, h) := h*

combine(skg, pky) = (g")* = gba = (g%)” = combine(sky, pkp)

Diffie-Hellman Assumption: g"b looks random given g¢, gb

Problem #1: Using the Shared Secret

ss = combine(sky, pk,4) has high entropy (unguessable), low uniformity

Unsuitable for encryption keys!

Examples: K’ = 010101 || K, K uniformly random
K'=KIO] [O [| K[TI[O f ...]| KIN]
g™’ where x,y uniform

Solution: Key Derivation Function

unguessable
—| KDF [—— uniformly random bytes
but non-uniform

Problem #2: Getting the right public key
S
I S
How do | discover Server’s public key?

Similar to problem for encryption keys, but big difference:

Distributing public information rather than secret

Problem #2: Getting the right public key

]

Option 1: Manually plug in the public key

Option 2: Digitally sign the public key with another one TLS

Allows DH key to change, but signing key stays the same

Digital Signatures

* Proves authenticity of data against public verification key

QQ) My DH public key is X |%| -

[

i j@) sign(skpg, dhpkB) ;l —
> E . E

verification key

Digital Sighatures

Gen() : SigningKey
MakeVK(sk : SigningKey) : VerifKey
Sign(sk : SigningKey, m € {0,1}*) : Signature
Verify(vk : VerifKey,m € {0,1}*,s : Signature) : Bool

unforgeability: attacker cannot forge signatures

using only public verification key, prior signatures

Getting Correct Verification Keys

How to install verification key?

Have a few pre-installed; bootstrap the rest
O
Root Certificate 7
C, = sign(sk_., vk || inter.com)l i

Intermediate O
e O

Certificate

Authority
C, = sign(sk ..., Vk,.q | | fOO.COM) l %
O

O
foo.com
(CD C29 Vkend)

http://end.com

USERTrust RSA Certification Authority
L, InCommon RSA Server CA
L. khoury.northeastern.edu

—

(6/!/’/(’//(7//(’

khoury.northeastern.edu
Issued by: InCommon RSA Server CA
Expires: Saturday, October 5, 2024 at 7:59:59 PM Eastern Daylight Time

@ This certificate is valid

Trust
Details
Subject Name
Country or Region
State/Province
Organization
Common Name

Issuer Name
Country or Region
State/Province
Locality
Organization

Organizational Unit

Common Name

US

Massachusetts
Northeastern University
khoury.northeastern.edu

US

M

Ann Arbor

Internet2

INnCommon

InCommon RSA Server CA

ary/Security/Certificates.bundle/Contents/Resources/TrustStore.html C,

Trust store version: 2024040500

Trusted Certificates

Certificate name Issued by Type Key size Sig alg Serial number Expires EV policy Fingerprint (SHA-256)

D7 A7 A0 FB 5D 7E 27
31 D7 71 E9 48 4EBC
DE F7 1D 5F OC 3E OA
29 48 78 2B C8 3E EO
EA 69 9E F4

AAA Certificate Services AAA Certificate Services

2048 bits 01 23:59:59 Dec 31, 2028 Not EV

AC RAIZ FNMT-RCM

AC RAIZ FNMT-RCM 4096 bits SHA-256 5D 93 8D 30 67 36 C8 00:00:00 Jan 1, 2030 EB C557 0C 29 01 8C
06 1D 1A C7 54 84 69 4D 67 B1 AA12 7B AF
07 12 F7 03 B4 61 1EBC
17 B7 DA B5 57 38 94

17 9B 93 FA

USERTrust RSA Certification USERTrust RSA Certification RSA 4096 bits SHA-384 01 FD 6D 30 FC A3 CA 23:59:59 Jan 18, 2038 1.3.6.1.4.1.6449.1.2.1.5.1 E7 93 C9 BO 2F D8 AA
Authority Authority 51 A8 1B BC 64 OE 35 2.23.140.1.1 13E21C 3122 8A CC
032D B0 811964 3B 74 9C
89 89 64 B1 74 6D 46
C3 D4 CB D2

Crypto Necessary for Communication Protocols

Encryption

carries out secure comm.

Key Derivation J

converts shared secrets to
good encryption keys

Diffie-Hellman J

create shared secret using PKC

_J

Digital Signatures

authenticating against public key

Specifying and Proving Security

* Up until now: a tour of cryptographic algorithms

* Rest of today: how do we make sure they’re used correctly?

Formal specs of security Formal specs of security

— —

for encryption, signatures, ... for protocols

Two Camps for Protocol Security

Symbolic Crypto Computational Crypto

or. “Dolev-Yao” model Same framework as

modern cryptography:

Represent crypto using complexity theory
abstract terms, equations

Requires more custom
Closer to existing Formal Methods tool support

tools (e.g., Model Checking)

Weaker security guarantees Accurate security guarantees

Symbolic Crypto

Protocol messages come from BNF grammar

t:=Ke&eKeys | (t,1) | fst(r) | snd(?) | enc(t,t) | dec(t,t) | C € Const | ...

Example term:

fst((enc(K;, K,), dec(K;,42)))

Symbolic Crypto

Protocol messages come from BNF grammar

t:=Ke&eKeys | (t,1) | fst(r) | snd(?) | enc(t,t) | dec(t,t) | C € Const | ...

Subject to equations:

dec(k,enc(k,m)) = m fst((x,y)) = x

(reversed argument order from Tamarin) snd((x, Y)) =Y

Attacker allowed to build

arbitrary terms using its current knowledge

Attacker’s Knowledge Set
A(r): attacker can deduce ¢

A(t) A(h) A(t) A(h) A(1) A(1)

A(enc(t;, 1)) A(dec(t;,1,)) A(fst(r)) A(snd(r)) A(C)

If § is a set of terms, let Clo(S) be the closure of §

Clo({K;, K, }) = all terms built out of K, K,

Example: is K; € Clo({K,,enc(K,,K;)})?

Attacker’s Knowledge Set
A(r): attacker can deduce ¢

A(t) A(h) A(t) A(h) A(1) A(1)

A(enc(t;, 1)) A(dec(t;,1,)) A(fst(r)) A(snd(r)) A(C)

Let $ = {enc(Kj;, K,), enc(K,, K;), enc(K,, m), K}
Is enc(K;,m) € Clo($)?

Let S = {enc(Kj, K,), enc(K,, K;), enc(K,, m), K}
Is enc(K5, m) € Clo(S)?

Example Protocol

output enc(K, N);

recv C; recv Cj;
Alice = 1if let m = dec(K, c) then Bop = .f let x = dec(K, c) then
1T m== N + 1 then OUtPUt enC(K, X + 1)
output “ok” else skip

else output “fatl”

Attacker may query parties arbitrarily, subject to its knowledge

Trace event (e.q., input/output)

/

Generates a trace (A, Pj) 3.3 A,,P,)

N

Knowledge of attacker Current state of protocol participant(s)

Example Protocol

Alice
output enc(K, N);

recv c;

1f let m = dec(K, c) then
itf m==N+ 1 then
output “ok”

else output “fail”

Bob

recv c;
1f let x = dec(K, c) then
output enc(K, x + 1)

else skip

enc(K, N)

Attacker Knowledge

U

Example Protocol

Alice
recv c;
| Attacker Knowledge
1f let m = dec(K, c) then
ifm==N+ 1 then fenc(K,N)}
output “ok”

deliver enc(K, N) to Bob

else output “fail”

Bob

recv c;
1f let x = dec(K, c) then
output enc(K, x + 1)

else skip

Example Protocol

Alice
recv c;
| Attacker Knowledge
1f let m = dec(K, c) then
ifm==N+ 1 then fenc(K,N)}
output “ok”

else output “fatl”

Bob

1f let x = dec(K, enc(K, N)) then
output enc(K, x + 1)

else skip

Example Protocol

Alice

recv c;

1f let m = dec(K, c) then
if m== N+ 1 then
output “ok”

else output “fatl”

Bob

output enc(K, N + 1)

enc(K, N + 1)

—_—

Attacker Knowledge
{enc(K,N)}

Example Protocol

Alice
recv C;
| Attacker Knowledge
1f let m = dec(K, c) then
it m==N+1 then lenc(K,N),enc(K,N+ 1)}
output “ok”
else output “fail” deliver enc(K, N + 1) to Altice
4—
Bob

skip

Example Protocol

Alice

| Attacker Knowledge
1f let m = dec(K, enc(K, N + 1)) then

if m==N+ 1 then {enc(K,N),enc(K,N + 1)}
output “ok”

else output “fatl”

Bob

skip

Example Protocol

Alice
Attacker Knowledge
output ToK tenc(K,N),enc(K,N+ 1)}
Bob

skip

Example Protocol: Properties

Secrecy: if initial attacker knowledge A, = { }, can attacker learn K?

(Ag, Py) =»* (A, P,) => K & Clo(A,)

Authentication:

If Ag = { },and Alice output “ok”, Bob must have output enc(K, N + 1)

(Ap, Pp) EN (A, ,done) A (Alice:ok) € T =— (Bob:enc(K,N+1))eT

How to Prove Symbolic Properties

Tamarin Prover

The Tamarin prover is a security protocol verification tool that supports
both falsification (attack finding) and unbounded verification (proving)
In the symbolic model. Security protocols are specified as multiset
rewriting systems and analyzed with respect to temporal first-order
properties.

Tamarin has been successfully used to analyze and support the
development of modern security protocols [1,2], including
TLS 1.3 [3,4], 5G-AKA [5,6], Noise [7], EMV (Chip-and-pin) [8], and
Apple iMessage [9].

& Get the docs | & Install Tamarin

Weaknesses of Symbolic Crypto

* Encryption is assumed to be completely opaque:
* The only thing attacker can do is manipulate abstract term
e |n the real world, attacker can:
* View/change individual bits
* | everage brute-force attacks

* View lengths of all messages

Weaknesses of Symbolic Crypto

NEWS

'CRIME' attack abuses SSL/TLS data compression

feature to hijack HTTPS sessions

SSL/TLS data compression leaks information that can be used to decrypt HTTPS session
cookies, researchers say

C = encrypt(compress(M))

length of C
—> (partial) value of M

Computational Model

Same model as is assumed in crypto papers
Cryptography modeled as probabilistic algorithms on bitstrings

Attacker is arbitrary probabilistic algorithm

To rule out brute-force attacks:
o Attacker is polynomial time

» Security guarantees must hold up to negligible error

Negligible Functions

Let A be a probabilistic poly-time (PPT) algorithm

Suppose A is trying to forge a ciphertext ¢ so that dec(K, ¢) succeeds
without knowing K or any valid ciphertext for K

Trivial attack:
1. Guess K by flipping random coins

2. Encrypt O using K

Pr[A wins|] = — A = security parameter
24 (here, length of key)

Negligible Functions

Allow adversaries to violate security with probability negligible in A

€(') is negligible when for all polynomials P, there exists an /V,

|
A>S>N = (1) < ——

P(4)
s negligibl
Example: 5 IS negligible 1
T‘O IS not
A /
— IS negligible

A

Modelling Encryption Computationally

The Joy of Cryptography

by Mike Rosulek « joyofcryptography.com -

The Joy of Cryptographyis a free undergraduate-level textbook that introduces students

to the fundamentals of provable security.

Get the full PDF (4.1MB)

Latest draft: Jan 3, 2021; 286 pages

Security Properties for Symmetric Encryption
(informally, for Authenticated Encryption)

Decryption must be correct:

if K <- Gen and ¢ <- Enc(k, m), then Dec(k, ¢) = m

If attacker only sees ciphertexts but not otherwise the key:
* Plaintext stays secret, except for its length (Semantic Security)

» Attacker can’t produce a valid ciphertext (Ciphertext Integrity)

Security Games

Security specified via indistinguishability of programs (security games)

EncReal
nit © K & Gen(4)

initialization code

everything implicitly

E :
nc(m) parameterized by 4

return enc(K, m)

oracles:
Dec(c) :

return dec(X, ¢)

iInput, return bitstrings

Adversaries for Games

EncReal
init : K Gen(A)

probabilistic algorithm A is an

adversary for EncGame if:

Enc(m) : - it is polytime in A
return enc(K, m)

- It makes queries to Enc, Dec
Dec(c) :

return dec(K, c)

- eventually, returns a boolean b

A DX EncGame : final decision bit output by A, when linked with EncGame

Indistinguishability of Games

EncReal Encldeal
nit :© K & Gen(4)

Enc(m) :

return enc(K, m)

Dec(c) :

return dec(K, c)

Security Game Indistinguishability:
No adversary can tell the difference between the two games

Indistinguishability of Games

EncReal Encldeal
init : K Gen(A)

Enc(m) :

return enc(K, m)

Dec(c) :

return dec(K, c)

Security Game Indistinguishability:

V PPT A, | Pr[A M EncGame = 1] — Pr[A M EncGame’' = 1]]| < e(1)
where ¢ Is negligible

Authenticated Encryption, Computationally
Encldeal

FncReal init : K& Gen(A)

" log .= []
init : K < Gen(A)

Enc(m) :

Enc(m) :

return enc(K, m)

¢ <« enc(K,0™)
log[c] :=m

Dec(c) return ¢

return dec(X, ¢) Dec(c) :

If log|[c] exists :
return log|c]

else return L

Authenticated Encryption, Computationally
Encldeal

Main idea: attacker only sees junk ciphertexts nit © K <& Gen(A)
log := []

Encryption cannot hide lengths, so Enc(m) :

junk ciphertext must not obscure length ¢ <« enc(K,0™)

log[c] :=m

return c

use an ideal log to map junk ciphertexts Dec(c) :

back to real messages if log[c] exists :
return log|c]

else return L

Authenticated Encryption, Computationally

Encldeal
init : K& Gen(A)
correctness: decryption is correct by construction log :=]

Enc(m) :

secrecy: junk ciphertexts don’t hold message ¢ < enc(K,0")
log[c] :=m

return c

Integrity: attacker cannot create a ciphertext
Dec(c) :

except by calling Enc oracle; forgery impossible

If log|[c] exists :

return log|c]
else return L

Authenticated Encryption, Computationally

Encldeal
EncReal init : K Gen(A)
— " log =[]
Gen’ enc, dec init : K < Gen(4)
. Enc(m) :
IS a secure .
EnC(n’I) : O enC(K,()lml)
authenticated encryption scheme return enc(K, m) og[c] := m
Dec(c) return c
if the two games are return dec(K, ¢) Dec(c) :
indistinguishable if log[c] exists :

return log|c]

else return L

Authenticated Encryption, Computationally

Often phrased as two separate

equivalences:

- INT-CTXT (Ciphertext Integrity)
- Ciphertexts are unforgeable

- IND-CPA (Semantic Security)

- Ciphertexts keep messages secret

EncReal

init : K Gen(A)

Enc(m) :

return enc(K, m)

Dec(c) :

return dec(K, ¢)

Encldeal

init : K Gen(A)
log := []

Enc(m) :

¢ « enc(K,0"h
log[c] :=m
return c

Dec(c) :

If log|[c] exists :

return log|c]
else return L

Using Authenticated Encryption

r Real

recv c;
1T let x = dec(K, c) then

Alice = output enc(K, N); Bob =
output enc(K, x + 1)

else skip

Goal: attacker can’t learn anything about N

Using Authenticated Encryption

sim has no access to

simulator secrets at all!
Goal : VA, HS,A hd PReaI — S
adversary adv interacting

with secrets

Simulation:
“any information that can be computed using protocol

can be computed without the protocol”

Using Authenticated Encryption

r Real

recv c;
1T let x = dec(K, c) then

output enc(K, x + 1)

Alice = output enc(K, N); Bob =

else skip

|dea: rewrite protocol to make use of security game for enc, dec

Using Authenticated Encryption

PHybrid

recv c;
1f let x = G.Dec(c) then
output G.Enc(x + 1)

Alice = output G.Enc(N); Bob =

else skip

|dea: rewrite protocol to make use of security game for enc, dec

Using Authenticated Encryption

PReaI ~ PHybrid [)4 EncRea| by unfolding definitions

EncReal ~ Encldeal by assumption

PReaI ~ PHybrid I Encldeal by congruence

Hybrid Protocol

PHybrid

recv c;
1f let x = G.Dec(c) then
output G.Enc(x + 1)

Alice = output G.Enc(N); Bob =

else skip

ldealized Protocol
Pryeal := Prybrig M Encldeal

log := [];

recv c;
if let x = log[c] then
let c_out = enc(K, 000000);
loglc_out] := x + 1;

let c_out = enc(K, 000000);

Alice = log[c_out] := N; Bob =

output c_out;
output c_out;

else skip

ldealized Protocol
/
Ideal

log := [];

recv c;
if let x = log[c] then
let c_out = enc(K, 000000);
loglc_out] := x + 1;

let c_out = enc(K, 000000);

Alice = loglc_out] := 0000000; Bob =

output c_out;
output c_out;

else skip

ldealized Protocol

~ D/
r Ideal ™~ * Ideal

Computational Noninterference:

Changing value of secret nonce N
does not change external behavior

Proving Secrecy
Goal : VA, dS5,A X Pr., =9

A M Prea ® A X (Pyyprig M EncReal)
~ A X (Pyyprig M Encldeal)
~ A X PIdeaI

%A[X]PI,deaI =: S

Computational Provers

CryptoVerif:

“
w
automates security game rewrites

used for TLS, Kerberos, SSH, Signal, WireGuard, ...

Squirrel; P
hides complex rewrites behind symbolic-looking logic J

Owl:

hides complex rewrites behind information flow type system

Computational Provers

EasyCrypt:

more expressive, based on Probabilistic Relational Hoare Logic

Today

 Symbolic Crypto: modelling crypto with abstract terms

 Computational Crypto: modelling crypto using indistinguishabilities

Next Time

A Comprehensive Symbolic Analysis of TLS 1.3

Cas Cremers Marko Horvat Jonathan Hoyland
University of Oxford, UK MPI-SWS, Germany Royal Holloway, University of
London, UK
Sam Scott Thyla van der Merwe
Royal Holloway, University of Royal Holloway, University of

London, UK London, UK

After that..

Computationally Sound Mechanized Proofs for Basic and

Public-key Kerberos
B. Blanchet ~ A.D. Jaggard' A. Scedrov’
CNRS & Ecole Normale DIMACS Department of Mathematics
Supérieure & INRIA Rutgers University University of Pennsylvania
blanchet@di.ens.fr adj@dimacs.rutgers.edu scedrov@math.upenn.edu
>
J.-K. Tsay

Department of Mathematics
University of Pennsylvania

jetsay@math.upenn.edu

